(x^2-5x)(5x^2-5x+10)+24=0

Simple and best practice solution for (x^2-5x)(5x^2-5x+10)+24=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-5x)(5x^2-5x+10)+24=0 equation:


Simplifying
(x2 + -5x)(5x2 + -5x + 10) + 24 = 0

Reorder the terms:
(-5x + x2)(5x2 + -5x + 10) + 24 = 0

Reorder the terms:
(-5x + x2)(10 + -5x + 5x2) + 24 = 0

Multiply (-5x + x2) * (10 + -5x + 5x2)
(-5x * (10 + -5x + 5x2) + x2(10 + -5x + 5x2)) + 24 = 0
((10 * -5x + -5x * -5x + 5x2 * -5x) + x2(10 + -5x + 5x2)) + 24 = 0
((-50x + 25x2 + -25x3) + x2(10 + -5x + 5x2)) + 24 = 0
(-50x + 25x2 + -25x3 + (10 * x2 + -5x * x2 + 5x2 * x2)) + 24 = 0
(-50x + 25x2 + -25x3 + (10x2 + -5x3 + 5x4)) + 24 = 0

Reorder the terms:
(-50x + 25x2 + 10x2 + -25x3 + -5x3 + 5x4) + 24 = 0

Combine like terms: 25x2 + 10x2 = 35x2
(-50x + 35x2 + -25x3 + -5x3 + 5x4) + 24 = 0

Combine like terms: -25x3 + -5x3 = -30x3
(-50x + 35x2 + -30x3 + 5x4) + 24 = 0

Reorder the terms:
24 + -50x + 35x2 + -30x3 + 5x4 = 0

Solving
24 + -50x + 35x2 + -30x3 + 5x4 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| x-24=x+1 | | -(12+3w)-(9w-5z)= | | -20+5-4h=20-9h | | 4b-6-10b-7= | | 3x^2-19x=-20 | | r=6+(-9)+11 | | -4d+1-5=-3d+13 | | -17-(5k)=-37 | | y=-x*2-4x-1 | | 7A+2b=22 | | 2x+2(x-3)=4x-8 | | 19-5n=-31 | | 5(x+1)-8=x-4(x-1) | | -45-27n=0 | | 2x-2-x=0 | | 1/2(-1/2)+1=f | | -14+4b+7=1+5b | | S^2-6s-26=0 | | 6n+15=75 | | -x^2+22x-57=0 | | 0.5(7y-4)+y=3y-0.5(6-5y) | | 4m^2-49n^2=0 | | y=x*2-8x+12 | | F(x)=12x^3+4x^2+3x+1 | | -16+6h= | | x^2+3x+3=4 | | 5x+3x+11=29-x | | 60x=40x+5x^2 | | (9x-5)(9x+5)= | | 0.40(60)+0.60x=0.48(48+x) | | 0=-16x^2+750 | | 2(x+5)=2x+2(5) |

Equations solver categories